Angles and Similar Triangles

Pleasanton Math Circle

1 Angle Chasing

In this section we illustrate how we can use angles to prove results. The diagram below illustrates the fundamental results of angles.

Figure 1: Angle Properties

Proposition 1.1 (Angle Properties). In Figure 1, two of the lines are parallel. We know that $a=180-c$ and $a=d$. From this we can show that $a=b=d=e=180-c=180-f$.

Example 1.2. In $\triangle A B C, \angle A+\angle B+\angle C=180^{\circ}$.
Proof. Draw a line through A parallel to $B C$. Now use Proposition 1.1.
Example 1.3. Let $A B$ be a diameter of a circle and choose point C on this circle. Then $\angle C=90^{\circ}$.

1.1 Exercises

Exercise 1.4. One angle of a right triangle has measure x. Find the measures of the remaining two angles.
Exercise 1.5. One angle in an iscosceles triangle has measure x°. Find all possible measures of the other two angles.

Exercise 1.6. Show that the interior angles in a quadrilateral sum to 180°. Find a formula for an n-sided polygon.

Exercise 1.7. Points A, B, C are chosen on a circle with center O such that $A B C O$ is a rhombus. Find $\angle A B C$.

Exercise 1.8. In $\triangle A B C$, let the altitudes intersect at a point H (the orthocenter). Prove that $\angle B H C=$ $180-\angle A$.

Exercise 1.9 (Inscribed Angle Theorem). If A, B, C lie on a circle, then prove that $\angle A C B$ subtends an arc of measure $2 \angle A C B$. Hint: Draw $C O$. (See Figure 2).

Figure 2: The Inscribed Angle Theorem

2 Similar Triangles

Identifying similar triangles are often key steps of a proof. Before discussing similar triangles, we consider an example using an even more primitive result - congruent triangles.

Proposition 2.1 (Congruency). Two triangles are congruent if and only if they satisfy $S S S, S A S, A S A$, or HL.

Example 2.2. Given $\triangle A B C$, construct equilateral triangles $\triangle B C D, \triangle C A E, \triangle A B F$ outside of $\triangle A B C$. Prove that $A D=B E=C F$.

Figure 3: $A D=B E=C F$

Proof. Notice that $D C=B C$ and $C A=C E$. Also, $\angle D C A=60^{\circ}+\angle C=\angle B C E$. So by $S A S$ congruency, $\triangle D C A \equiv \triangle B C E$. Hence, $A D=B E$. Similarly, we can find $\triangle E A B \equiv \triangle C A F$, which implies $B E=C F$. Hence $A D=B E=C F$ as desired.

Figure 3 suggests that $A D, B E, C F$ are concurrent. In fact, they meet at the first Fermat point, which we will prove next meeting.

Proposition 2.3 (Similar Triangles). Two triangles are similar if and only if they satisfy $A A, S S S, S A S, A S A$, or $H L$.

Proposition 2.4. In $\triangle A B C$, choose points X and Y on sides $A B$ and $A C$. Then $\frac{A X}{A Y}=\frac{A B}{B C}$ if and only if $X Y \| B C$.

Proof. Verify that $\triangle A X Y \sim \triangle A B C$ from $S A S$ similarity. Then the result follows from the observation $\angle A X Y=\angle A B C$.

A noteworthy corollary is that if M and N are the midpoints of $A B$ and $A C$, then $M N \| A C$. A nice application is the following.

Example 2.5 (Varignon Parallelogram). Given a quadrilateral $A B C D$, let M, N, P, Q denote the midpoints of sides $A B, B C, C D, D A$ respectively. Then $M N P Q$ is a parallelogram.

Proof. Draw in the diagonals and apply Proposition 2.4 .
Proposition 2.6. If the ratio of the perimeters of two similar figures is x, then the ratio of the areas of the two similar figures is x^{2}.

2.1 Exercises

Exercise 2.7. $\triangle A B C \sim \triangle D E F$. If $A B=3, B C=4, D E=6$, find $E F$.
Exercise 2.8. In $\triangle A B C$, let M and N be the midpoints of $A C$ and $A B$. Let $B M$ and $C N$ meet at G (the centroid). Prove that $B G: G M=2: 1$.

Exercise 2.9. Show that $A B C D$ is a parallelogram if and only if $A C$ and $B D$ bisect each other.
Exercise 2.10 (2015 Geometry Bee \#6). $\triangle A B C$ has area 100. Points P, Q, and R are on sides $A B$, $B C$, and $C A$ respectively such that $P Q$ is parallel to $A C$ and $R Q$ is parallel to $A B$. If $\triangle P Q B$ has area 64 , then find the area of $A P Q R$.

Exercise 2.11 (Angle Bisector Theorem). In $\triangle A B C$, choose point D on segment $B C$ such that $\angle B A D=$ $\angle C A D$. Show that

$$
\frac{B D}{C D}=\frac{A B}{A C}
$$

Hint: Use Figure 4

Figure 4: Angle Bisector Theorem

Exercise 2.12. In $\triangle A B C$ let $\angle C$ be right. Let D denote the foot of the altitude from C to $A B$. Then show that $\triangle A B C \sim \triangle A B C \sim \triangle C B D$. Use this to show that $A D \cdot B D=C D^{2}$.

Exercise 2.13. Prove that the area of a trapezoid with bases b_{1} and b_{2} and height h is $\frac{1}{2}\left(b_{1}+b_{2}\right) h$.
Exercise 2.14. $A B C D$ is a trapezoid with $A B \| C D$ and area 32. Let $A C$ and $B D$ meet at $X . A B=3$ and $C D=5$. Find the area of $\triangle A B X$.

Exercise 2.15 (WOOT). In the following diagram, E is the midpoint of $C D, E A=E B$, and $\angle F A C=$ $\angle F B D=90^{\circ}$. Prove that triangles $F A C$ and $F B D$ are similar.

