Angles and Similar Triangles

Pleasanton Math Circle

1 Angle Chasing

In this section we illustrate how we can use angles to prove results. The diagram below illustrates the fundamental results of angles.

Figure 1: Angle Properties

Proposition 1.1 (Angle Properties). In Figure 1, two of the lines are parallel. We know that a = 180 - c and a = d. From this we can show that a = b = d = e = 180 - c = 180 - f.

Example 1.2. In $\triangle ABC$, $\angle A + \angle B + \angle C = 180^{\circ}$.

Proof. Draw a line through A parallel to BC. Now use Proposition 1.1.

Example 1.3. Let AB be a diameter of a circle and choose point C on this circle. Then $\angle C = 90^{\circ}$.

1.1 Exercises

Exercise 1.4. One angle of a right triangle has measure x. Find the measures of the remaining two angles.

Exercise 1.5. One angle in an iscosceles triangle has measure x° . Find all possible measures of the other two angles.

Exercise 1.6. Show that the interior angles in a quadrilateral sum to 180° . Find a formula for an *n*-sided polygon.

Exercise 1.7. Points A, B, C are chosen on a circle with center O such that ABCO is a rhombus. Find $\angle ABC$.

Exercise 1.8. In $\triangle ABC$, let the altitudes intersect at a point H (the orthocenter). Prove that $\angle BHC = 180 - \angle A$.

Exercise 1.9 (Inscribed Angle Theorem). If A, B, C lie on a circle, then prove that $\angle ACB$ subtends an arc of measure $2\angle ACB$. Hint: Draw CO. (See Figure 2).

Figure 2: The Inscribed Angle Theorem

2 Similar Triangles

Identifying similar triangles are often key steps of a proof. Before discussing similar triangles, we consider an example using an even more primitive result - congruent triangles.

Proposition 2.1 (Congruency). Two triangles are **congruent** if and only if they satisfy *SSS*, *SAS*, *ASA*, or *HL*.

Example 2.2. Given $\triangle ABC$, construct equilateral triangles $\triangle BCD$, $\triangle CAE$, $\triangle ABF$ outside of $\triangle ABC$. Prove that AD = BE = CF.

Figure 3: AD = BE = CF

Proof. Notice that DC = BC and CA = CE. Also, $\angle DCA = 60^{\circ} + \angle C = \angle BCE$. So by SAS congruency, $\triangle DCA \equiv \triangle BCE$. Hence, AD = BE. Similarly, we can find $\triangle EAB \equiv \triangle CAF$, which implies BE = CF. Hence AD = BE = CF as desired.

Figure 3 suggests that AD, BE, CF are concurrent. In fact, they meet at the **first Fermat point**, which we will prove next meeting.

Proposition 2.3 (Similar Triangles). Two triangles are **similar** if and only if they satisfy *AA*, *SSS*, *SAS*, *ASA*, or *HL*.

Proposition 2.4. In $\triangle ABC$, choose points X and Y on sides AB and AC. Then $\frac{AX}{AY} = \frac{AB}{BC}$ if and only if $XY \parallel BC$.

Proof. Verify that $\triangle AXY \sim \triangle ABC$ from SAS similarity. Then the result follows from the observation $\angle AXY = \angle ABC$.

A noteworthy corollary is that if M and N are the midpoints of AB and AC, then $MN \parallel AC$. A nice application is the following.

Example 2.5 (Varignon Parallelogram). Given a quadrilateral ABCD, let M, N, P, Q denote the midpoints of sides AB, BC, CD, DA respectively. Then MNPQ is a parallelogram.

Proof. Draw in the diagonals and apply Proposition 2.4.

Proposition 2.6. If the ratio of the perimeters of two similar figures is x, then the ratio of the areas of the two similar figures is x^2 .

2.1 Exercises

Exercise 2.7. $\triangle ABC \sim \triangle DEF$. If AB = 3, BC = 4, DE = 6, find EF.

Exercise 2.8. In $\triangle ABC$, let M and N be the midpoints of AC and AB. Let BM and CN meet at G (the centroid). Prove that BG : GM = 2 : 1.

Exercise 2.9. Show that *ABCD* is a parallelogram if and only if *AC* and *BD* bisect each other.

Exercise 2.10 (2015 Geometry Bee #6). $\triangle ABC$ has area 100. Points P, Q, and R are on sides AB, BC, and CA respectively such that PQ is parallel to AC and RQ is parallel to AB. If $\triangle PQB$ has area 64, then find the area of APQR.

Exercise 2.11 (Angle Bisector Theorem). In $\triangle ABC$, choose point *D* on segment *BC* such that $\angle BAD = \angle CAD$. Show that

$$\frac{BD}{CD} = \frac{AB}{AC}.$$

Hint: Use Figure 4

Figure 4: Angle Bisector Theorem

Exercise 2.12. In $\triangle ABC$ let $\angle C$ be right. Let D denote the foot of the altitude from C to AB. Then show that $\triangle ABC \sim \triangle ABC \sim \triangle CBD$. Use this to show that $AD \cdot BD = CD^2$.

Exercise 2.13. Prove that the area of a trapezoid with bases b_1 and b_2 and height h is $\frac{1}{2}(b_1 + b_2)h$.

Exercise 2.14. ABCD is a trapezoid with $AB \parallel CD$ and area 32. Let AC and BD meet at X. AB = 3 and CD = 5. Find the area of $\triangle ABX$.

Exercise 2.15 (WOOT). In the following diagram, E is the midpoint of CD, EA = EB, and $\angle FAC = \angle FBD = 90^{\circ}$. Prove that triangles FAC and FBD are similar.

