Random Card Shuffle

Pleasanton Math Circle

January 12st, 2017

1 The Top-in Shuffle

How do you gauge the randomness of a shuffle? In order to do his, we first need to understand what a shuffle is and what randomness means. Consider the function $f(x)$ which represents a permutation of a deck $A B C D E$.

An Example Permutation					
x	1	2	3	4	5
$f(x)$	2	3	1	5	4

In this shuffle, a card at position 1 will get moved to position 2 . A card at position 2 will get moved to position 3 , etc. Therefore, we will end up with $C A B E D$. A shuffle does not tell us anything about the cards in the deck itself. It only shows how the cards move. In shorthand, we write the permutation as $f(x)=[23154]$, or (123)(45) using cyclic notation. The set of all permutations of a deck is defined to be S_{n}. A shuffle is simply a method that assigns probabilities to each permutation of a deck.
For example, consider a specific shuffle: the top-in shuffle. In this shuffle, you take the top card of the deck, then move it, with equal probability, to anywhere in the deck. This assignment of

The Top-in Shuffle						
permutation	$[123]$	$[213]$	$[231]$	$[321]$	$[312]$	
probability	$1 / 3$	$1 / 3$	$1 / 3$	0	0	

probability to the six possible permutations is called a probability density.

1. how many permutations does a deck with n cards have?
2. Create a shuffle chart for cutting a deck with 3 cards.
3. Think of a viable way to determine the randomness of a shuffle.

2 The Riffle Shuffle

The riffle shuffle is a model of a shuffle that someone in real life would do. In this shuffle, you split a deck into two smaller decks, with the probability of splitting a deck after k cards being $\binom{n}{k} / 2^{n}$. Then, maintaining the relative order in each of the two individual decks, the cards are interlayed. For example, if a deck with 8 cards are split into two decks $1-4$ and $5-8$, some possibilities include 1627384 or 15678234 , etc.

1. Prove that the probabilities of all the permutations sum to 1 .
2. How many permutations does a deck with n cards with cut after k cards have?
3. Create a chart listing all possible permutations given a cut at position k.
4. What is the probability of achieving each cut+interweaving of the cards?
5. Create a shuffle chart for cutting a deck with 3 cards.

3 Determining the Randomness

Now, we are finally ready to gauge randomness. Consider two distinct shuffles with probability densities Q_{1} and Q_{2}. The variation between the two shuffles is defined to be

$$
\left\|Q_{1}-Q_{2}\right\|=1 / 2 \sum_{x \in S_{n}}\left|Q_{1}(x)-Q_{2}(x)\right|
$$

Therefore, a good method to gauge randomness is the variation from a distribution where each permutation has equal probability, or

$$
\sigma=1 / 2 \sum_{x \in S_{n}}|Q(x)-1 / n!|
$$

1. What is the range of the variation function?
2. What does a small σ indicate? A large σ ?

4 How Many Shuffles?

Consider what we call a Rising Sequence. A rising sequence is a sequence in which we take a card in a deck, then find the consecutively next higher card, while proceeding right from the original card. For example, the sequence 45162378 has two rising sequences: 123 and 45678. Now, instead of the riffle shuffle, consider the a-shuffle, a modification of the riffle shuffle where we consider not splitting the deck into 2 smaller decks, bu a smaller decks, before interweaving the cards. Instead of $\binom{n}{k} / 2^{n}$, the probability of splitting the deck into smaller decks of size $p_{1}, p_{2}, \ldots, p_{n}$ is $\frac{n!}{p_{1}!p_{2}!\ldots p_{a}!} / a^{n}$.

Challenge Problem 1 Find that the probability of achieving each cut+interweaving of the cards
Challenge Problem 2 Prove that the probability of achieving a permutation with rising sequences is $\binom{n+a-r}{n} / a^{n}$. Hint: start your casework on the riffle shuffle.

So, why did we generalize the riffle shuffle? Persi Draconis figured out the multiplication theorem for the a-shuffle.

Theorem 1 (Multiplication Theorem)
Carrying out a a-shuffle followed by a b-shuffle is the same as doing an $a b$ - shuffle.

You can try testing this theorem experimentally. We will finally proceed to find the probability density of R_{k}, or doing k riffle shuffles. By repeatedly applying riffle shuffles, notice that, by using the multiplication theorem, this is equivalent of doing a $2 \cdot 2 \cdot 2 \cdot \ldots=2^{k}$-shuffle.

Challenge Problem 3 Find σ for k riffle shuffle $\sigma_{R_{k}}$ in terms of r, k, n and $A_{n, r}$, the permutation of n cards with r rising sequences (aka Eulerian numbers).

Although the equation derived looks very formidable, using computers, we see that σ starts rapidly decreasing at $k=5$, and practically reaches 0 by $k=11 . k=7$ seems to be a good middle-point for the cutoff. Additionally, analysis of the graph shows that when n is large, $k=\frac{3}{2} \log n$ suffices to get σ close to 0 .

