Cyclic Quadrilaterals

Pleasanton Math Circle

1 Theory and Examples

Theorem 1.1 (Inscribed Angle Theorem). If A, B, C lie on a circle, then $\angle A C B$ subtends an arc of measure $2 \angle A C B$.

Proposition 1.2 (Cyclic Quadrilaterals). Let $A B C D$ be a convex quadrilateral. Each of the three statements below are equivalent.

1. $A B C D$ is cyclic.
2. $\angle A C B=\angle A D B$.
3. $\angle A B C+\angle C D A=180$.

(a) $\angle A C B=\angle A D B$

(b) $\angle A C B=\angle A D B$

Figure 1: Property of Cyclic Quadrilaterals

Now we can prove the existence of the first Fermat point.
Theorem 1.3 (Fermat Point). Given $\triangle A B C$, construct equilateral triangles $\triangle B C D, \triangle C A E, \triangle A B F$ outside of $\triangle A B C$. Then $A D, B E, C F$ concur at the first Fermat point.

Figure 2: The Fermat Point

Proof. First we show that the circles $\odot(B C D), \odot(C A E), \odot(A B F)$ share a common point. Let $\odot(A B F), \odot(C A E)$ meet at F_{1}. Then $\angle A F_{1} B=\angle C F_{1} A=120^{\circ}$. Therefore, $\angle B F_{1} C=120=180-\angle B D C$, so $B F_{1} C D$ is cyclic as desired. Now notice that $\angle A F_{1} C=120=180-60=180-\angle D B C=180-\angle D F_{1} C$. So A, F_{1}, D are collinear and the proof follows.

2 Exercises

Exercise 2.1. Consider a circle with diameter $A B$. Then C is on this circle if and only if $\angle A C B=90^{\circ}$.
Exercise 2.2. In $\triangle A B C$, let $A D, B E, C F$ be altitudes meeting at the orthocenter H. Find 6 quadruples of points in this configuration that are concyclic.

Figure 3: Orthocenter

Exercise 2.3. In Figure 3, show that $\angle H B C=90-\angle C$ and $\angle H C B=90-\angle B$. Deduce that $\angle B H C=$ $180-\angle A$.

Exercise 2.4. Use Exercise 2.3 to show that the reflection of H across $B C$ lies on the circumcircle of $\triangle A B C$.
Theorem 2.5 (Miquel's Theorem). In $\triangle A B C$, choose points D, E, F on sides $\overline{B C}, \overline{C A}, \overline{A B}$ respectively. Then circles $\odot(A E F), \odot(B F D), \odot(C D E)$ share a common point.

Figure 4: Miquel's Theorem

Exercise 2.6. Let $\odot(A E F)$ and $\odot(B F D)$ meet at a point M. Show that $\angle E M F=180-\angle A$ and $\angle F M D=$ $180-\angle B$. Using this, find $\angle D M E$.

Exercise 2.7. Using Exercise 2.6, show that M lies on $\odot(C D E)$. Deduce Miquel's Theorem.
Theorem 2.8 (Reim's Theorem). Choose points A, B, X, Y on circle ω_{1} and let C and D be points on $A X$ and $B Y$. Then $A B \| C D$ if X, Y, C, D are concyclic.

Exercise 2.9. In Figure 5 show that $\angle A B Y=180-\angle C D Y$ to deduce Reim's Theorem.
Theorem 2.10 (Simson Line). Let P be a point on $\odot(A B C)$. Let D, E, F be the feet of the perpendiculars from P to $\overline{B C}, \overline{C A}, \overline{A B}$. Prove that D, E, F are collinear. This line is known as the Simson Line. Hint: Prove that $\angle P E F=180-\angle P E D$.

Figure 5: Reim's Theorem

Figure 6: Simson Line

Exercise 2.11. In Figure 6 show that $A E P F$ and $C D E P$ are cyclic.
Exercise 2.12. Now prove that $\angle P E F=180-\angle P E D$ and deduce the existence of the Simson Line.
Theorem 2.13 (Ptolemy's Theorem). Given cyclic quadrilateral $A B C D$, the product of the diagonals is equal to the sum of the products of the opposite sides. Equivalently,

$$
A B \cdot C D+B C \cdot D A=A C \cdot B D
$$

Figure 7: Ptolemy's Theorem

Let K be on $B D$ such that $\angle K C D=\angle A C B$.
Exercise 2.14. Show that $\triangle D K C \sim \triangle A B C$ and $\triangle K B C \sim \triangle D A C$.
Exercise 2.15. Now show that $\frac{K D}{C D}=\frac{A B}{A C}$ and $\frac{K B}{B C}=\frac{D A}{A C}$. Deduce Ptolemy's Theorem.

