Cyclic Quadrilaterals

Pleasanton Math Circle

1 Theory and Examples

Theorem 1.1 (Inscribed Angle Theorem). If A, B, C lie on a circle, then $\angle ACB$ subtends an arc of measure $2\angle ACB$.

Proposition 1.2 (Cyclic Quadrilaterals). Let $ABCD$ be a convex quadrilateral. Each of the three statements below are equivalent.

1. $ABCD$ is cyclic.
2. $\angle ACB = \angle ADB$.
3. $\angle ABC + \angle CDA = 180$.

![Figure 1: Property of Cyclic Quadrilaterals](image)

Now we can prove the existence of the first Fermat point.

Theorem 1.3 (Fermat Point). Given $\triangle ABC$, construct equilateral triangles $\triangle BCD, \triangle CAE, \triangle ABF$ outside of $\triangle ABC$. Then AD, BE, CF concur at the first Fermat point.

![Figure 2: The Fermat Point](image)
Proof. First we show that the circles \(\odot(BCD), \odot(CAE), \odot(ABF) \) share a common point. Let \(\odot(ABF), \odot(CAE) \) meet at \(F_1 \). Then \(\angle AF_1B = \angle CF_1A = 120^\circ \). Therefore, \(\angle BF_1C = 120 = 180 - \angle BDC \), so \(BF_1CD \) is cyclic as desired. Now notice that \(\angle AF_1C = 120 = 180 - 60 = 180 - \angle DBC = 180 - \angle DF_1C \). So \(A, F_1, D \) are collinear and the proof follows.

2 Exercises

Exercise 2.1. Consider a circle with diameter \(AB \). Then \(C \) is on this circle if and only if \(\angle ACB = 90^\circ \).

Exercise 2.2. In \(\triangle ABC \), let \(AD, BE, CF \) be altitudes meeting at the orthocenter \(H \). Find 6 quadruples of points in this configuration that are concyclic.

Figure 3: Orthocenter

Exercise 2.3. In Figure 3 show that \(\angle HBC = 90 - \angle C \) and \(\angle HCB = 90 - \angle B \). Deduce that \(\angle BHC = 180 - \angle A \).

Exercise 2.4. Use Exercise 2.3 to show that the reflection of \(H \) across \(BC \) lies on the circumcircle of \(\triangle ABC \).

Theorem 2.5 (Miquel’s Theorem). In \(\triangle ABC \), choose points \(D, E, F \) on sides \(BC, CA, AB \) respectively. Then circles \(\odot(AEF), \odot(BFD), \odot(CDE) \) share a common point.

Figure 4: Miquel’s Theorem

Exercise 2.6. Let \(\odot(AEF) \) and \(\odot(BFD) \) meet at a point \(M \). Show that \(\angle EMF = 180 - \angle A \) and \(\angle FMD = 180 - \angle B \). Using this, find \(\angle DME \).

Exercise 2.7. Using Exercise 2.6 show that \(M \) lies on \(\odot(CDE) \). Deduce Miquel’s Theorem.

Theorem 2.8 (Reim’s Theorem). Choose points \(A, B, X, Y \) on circle \(\omega_1 \) and let \(C \) and \(D \) be points on \(AX \) and \(BY \). Then \(AB \parallel CD \) if \(X, Y, C, D \) are concyclic.

Exercise 2.9. In Figure 5 show that \(\angle ABY = 180 - \angle CDY \) to deduce Reim’s Theorem.

Theorem 2.10 (Simson Line). Let \(P \) be a point on \(\odot(ABC) \). Let \(D, E, F \) be the feet of the perpendiculars from \(P \) to \(BC, CA, AB \). Prove that \(D, E, F \) are collinear. This line is known as the Simson Line. Hint: Prove that \(\angle PEF = 180 - \angle PED \).
Exercise 2.11. In Figure 6 show that $AEPF$ and $CDEP$ are cyclic.

Exercise 2.12. Now prove that $\angle PEF = 180 - \angle PED$ and deduce the existence of the Simson Line.

Theorem 2.13 (Ptolemy’s Theorem). Given cyclic quadrilateral $ABCD$, the product of the diagonals is equal to the sum of the products of the opposite sides. Equivalently,

$$AB \cdot CD + BC \cdot DA = AC \cdot BD.$$

Let K be on BD such that $\angle KCD = \angle ACB$.

Exercise 2.14. Show that $\triangle DKC \sim \triangle ABC$ and $\triangle KBC \sim \triangle DAC$.

Exercise 2.15. Now show that $\frac{KD}{CD} = \frac{AB}{AC}$ and $\frac{KB}{BC} = \frac{DA}{AC}$. Deduce Ptolemy’s Theorem.